

ALLEGATO 3

Indicazioni metodologiche sulla realizzazione della carta regionale delle aree di potenziale distacco valanghe -PRA (Potential Release Areas)

Sommario

	1.	Introduzione	4
	2.	Definizione delle aree di potenziale distacco valanghe - PRA	4
	2.	1 Pendenza	5
	2.	2 Curvatura planare	6
	2.	3 Rugosità superficiale	6
	2.	4 Quota	6
	2.	5 Aree boscate	6
	3.	Conclusioni	7
	APPE	ENDICE: Procedimento cartografico per la realizzazione della carta delle aree di	
рс	otenzi	ale distacco valanghe - PRA (Potential Release Areas)	9

1. Introduzione

Per la rappresentazione delle zone esposte al pericolo di valanghe esistono diversi strumenti, quali le Carte di Localizzazione Probabile delle Valanghe (CLPV) e, per singoli siti valanghivi, i Piani delle Zone Esposte alle Valanghe (PZEV). Per le CLPV la metodologia standard di realizzazione prevede l'individuazione dei siti valanghivi mediante fotointerpretazione di aerofotogrammi estivi finalizzata ad evidenziare potenziali tracce lasciate da un fenomeno valanghivo, l'esecuzione di sopralluoghi con raccolta di testimonianze orali ed infine la verifica dei dati di terreno con informazioni storiche (Cordola et al, 2006). La redazione delle PZEV implica diverse attività, quali la raccolta dati (valanghe storiche, sopralluoghi, rilievi topografici, etc.), l'elaborazione dati (fotointerpretazione, analisi nivometeorologiche, etc.), la modellazione del fenomeno ed infine il tracciamento della carta (Barbolini, 2005).

La differenza fondamentale tra le due carte sta nella classificazione, nelle PZEV, del pericolo valanghe in base alle pressioni d'impatto attese, calcolate con modelli di dinamica, mentre nelle CLPV vengono fornite solo indicazioni legate alla estensione dei fenomeni. Tra gli input fondamentali dei modelli di dinamica vi è il volume iniziale della valanga, determinato sulla base dello spessore di neve al distacco e dell'area di distacco.

Nella fase preliminare la carta delle aree di potenziale distacco valanghe consente di effettuare analisi del territorio atte a individuare situazioni di potenziale esposizione al pericolo di valanghe e propedeutiche a successivi approfondimenti. Si ottiene con l'ausilio di sistemi informativi territoriali (GIS) ed è finalizzata a fornire, sulla base di opportuni fattori topografici, morfologici e vegetativi, una individuazione delle zone di potenziale distacco delle valanghe.

Il dettaglio delle procedure di calcolo utilizzate per ottenere la carta delle aree di potenziale distacco valanghe è riportato in Appendice "Procedimento cartografico per la realizzazione della carta regionale delle aree di potenziale distacco valanghe - PRA (Potential Release Areas)"¹.

2. Definizione delle aree di potenziale distacco valanghe - PRA

Negli anni, diversi autori hanno proposto procedure per l'elaborazione ed individuazione delle aree di potenziale distacco delle valanghe (PRA), riassunti nella seguente tabella:

¹ L'attività di realizzazione della carta regionale di potenziale distacco valanghe si è sviluppata con il supporto di AINEVA nell'ambito della "Convenzione tra l'Agenzia regionale per la sicurezza territoriale e la protezione civile e, l'Associazione interregionale di coordinamento e documentazione per i problemi inerenti alla neve e alle valanghe (AINEVA) per un supporto tecnico, scientifico, metodologico e specialistico nelle attività finalizzate alla prevenzione, alla mitigazione, alla pianificazione e alla gestione del rischio valanghe", sottoscritta in data 21 settembre 2022.

Autori	Acclività	Curvatura	Scabrezza	Quota	Distanza dalle creste	Esposizione	Risoluzione DEM/DTM [m]	Approccio
Maggioni e Gruber (2003)	•	•			•	•	25; 50	boleano
Ghinoi e Chung (2005)	•	•			•	•	20	continuo
Barbolini et alii (2010, 2011)	•	•	•	•				
Vontobel (2011)	•	•	•		•	•	2; 25	boleano
Boltižiar et alii (2013)	•	•	•	•		•	10	discreto
Bühler et alii (2013)	•	•	•				5	boleano
Pistocchi e Notarnicola (2013)	•	•			•	•	10	continuo
Selçuk (2013)	•		•	•		•	25	discreto
Cìa et alii (2014)	•	•					5	boleano
Peitzsch et alii (2014)	•	•	•	•	•	•	10	boleano
Veitinger et alii (2016)	•		•			•1	2	continuo
Blahut et alii (2017)	•	•	•	•		•	5	boleano
Iacolettig and Sovilla (2017)	•		•			•1	5	continuo
Bühler et alii (2018, 2019, 2022)	•	•	•				5; 2	boleano

Per il territorio della Regione Emilia-Romagna, in base ai dati disponibili, si è scelto di utilizzare l'algoritmo proposto da Bühler et alii, che utilizza un approccio booleano.

Il procedimento si basa, tramite l'ausilio di un GIS, su un DTM (Digital Terrain Model – Modello Digitale del Terreno) con risoluzione 5 m da cui si ricavano pendenza, curvatura e rugosità. Laddove coesistono questi tre parametri in una scala di valori predefiniti, si hanno punti di potenziale distacco delle valanghe.

2.1 Pendenza

In letteratura esistono numerosi lavori che riconoscono l'inclinazione del terreno come il fattore determinante per la possibilità di distacco di una massa nevosa su un pendio (McClung e Schaerer, 1993; Schweizer, 2003).

Il gradiente di pendenza (slope) esprime il massimo rateo di variazione della quota lungo la superficie in un punto specifico ed è una variabile locale, ovvero è un piano tangente allo specifico punto della superficie di cui si può calcolare l'angolo rispetto all'orizzontale.

In generale una valanga può innescarsi su ogni area non boscata con pendenza superiore a 25°÷28°; il limite superiore delle pendenze favorevoli al distacco di valanghe è normalmente

fatto coincidere con 50°, anche se statisticamente non possono essere esclusi possibili distacchi su pendii di pendenza pari a 55°÷60°.

2.2 Curvatura planare

Solitamente le valanghe hanno luogo su porzioni di territorio relativamente piccole che si distinguono le une dalle altre per caratteristiche topografiche (per esempio creste o salti di roccia) e che mostrano una certa omogeneità all'interno delle aree stesse (es. esposizioni simili). Non appare peraltro possibile, allo stato attuale, definire un criterio oggettivo e generale per la separazione delle aree di distacco confinanti. Anche la suddivisione dei bacini idrografici, proposta dai più comuni applicativi GIS, non permette una corretta identificazione delle diverse aree di distacco, in quanto trattasi di limitate porzioni dei bacini idrografici non delimitabili correttamente in questo modo. Si è però osservato come la curvatura planare, ovvero la curvatura del terreno calcolata in direzione ortogonale alla linea di massima pendenza, possa fornire un valido aiuto a tale proposito. In questa analisi, zone contigue con una curvatura planare inferiore al valore di -0.0001 sono fatte corrispondere a "zone concave", ovvero zone senza creste o particolari asperità al loro interno e quindi favorevoli al distacco.

2.3 Rugosità superficiale

La rugosità, o scabrezza, influenza la propensione al distacco, la localizzazione e l'estensione delle valanghe (McClung, 2001; Schweizer et al., 2003) ed è quindi uno dei parametri fondamentali del modello. E' stato dimostrato che la scabrezza varia in funzione dell'altezza del manto nevoso e della sua variabilità spaziale (Veitinger e Sovilla, 2016; Veitinger et al., 2014). In Veitinger et al. (2016) la scabrezza corrispondente ad uno specifico scenario di altezza media del manto nevoso viene direttamente dedotta dal DTM estivo.

Il valore di rugosità da considerare ai fini dell'elaborazione è maggiore o uguale a 6.

2.4 Quota

Sulla base dei dati presenti nel Catasto delle valanghe fornito dal Comando dei Carabinieri Forestali della regione Emilia-Romagna, si è valutato di elaborare i dati considerando la fascia di quota superiore ai 1250 mslm.

2.5 Aree boscate

Oltre ai fattori sopra citati, è necessario escludere dall'analisi le aree coperte da bosco, in quanto, una densità consistente di vegetazione si oppone all'innesco del fenomeno valanghivo.

Per individuare le superfici boscate è stata utilizzata la Carta dell'Uso del suolo della Regione Emilia-Romagna (dettaglio 2020 ed. 2023).

Gli elementi (poligoni) che fanno parte dell'Uso del suolo sono codificati attraverso una combinazione di quattro numeri, parte integrante della tabella attributi. Il primo numero della

combinazione fornisce l'informazione legata al primo livello, ovvero alla macrocategoria di appartenenza di ciascun elemento poligonale.

				Bf	3.1.1.1 Boschi a prevalenza di faggi
1			3.1.1 Boschi di latifoglie		3.1.1.2 Boschi a prevalenza di querce, carpini e castagni
=					3.1.1.3 Boschi a prevalenza di salici e pioppi
5					3.1.1.4 Boschi planiziari a prevalenza di farnie, frassini ecc.
ambid ali	3.1 Aree boscate			3.1.1.5 Castagneti da frutto	
				3.1.1.6 Boscaglie ruderali	
		3.1.2 Boschi di conifere		3.1.2.0 Boschi di conifere	
1 -	n n		3.1.3 Boschi misti di conifere e latifoglie		3.1.3.0 Boschi misti di conifere e latifoglie
j je	ati	3.2 Ambienti con vegetazione arbustiva e/o erbacea in evoluzione	3.2.1 Praterie e brughiere di alta quota		3.2.1.0 Praterie e brughiere di alta quota
8	Ę.		3.2.2 Cespuglieti e arbusteti		3.2.2.0 Cespuglieti e arbusteti
a B	e		3.2.3 Aree a vegetazione arbustiva e arborea in evoluzione		3.2.3.1 Aree con vegetazione arbustiva e/o erbacea con alberi sparsi
5	s				3.2.3.2 Aree a rimboschimenti recenti
1 #			3.3.1 Spiagge, dune e sabbie	Ds	3.3.1.0 Spiagge, dune e sabbie
<u> </u>			3.3.2 Rocce nude, falesie, affioramenti	Dr	3.3.2.0 Rocce nude, falesie, affioramenti
15		3.3 Zone aperte con vegetazione rada o assente	2.2.2 Area can unretariona rada	Dc	3.3.3.1 Aree calanchive
1			5.5.5 Aree con vegetazione rada	Dx	3.3.3.2 Aree con vegetazione rada di altro tipo
1			3.3.4 Aree percorse da incendi	Di	3.3.4.0 Aree percorse da incendi
_					

Per questa elaborazione sono state escluse tutte le aree sottese al livello 3.1 Aree boscate.

3. Conclusioni

La carta delle PRA deriva, con logica booleana, dall'interazione di tutti i parametri sopra citati: vengono quindi individuati dei poligoni che si trovano ad una quota superiore di 1250 mslm, con un intervallo di pendenze ben definito, in zone prive di boschi e in cui si delinea una morfologia concava che rappresentano aree di potenziale distacco valanghe. Dei poligoni ottenuti con il metodo sopra descritto si mantengono solo le aree sommitali procedendo ad individuarne il punto più alto e ridefinendo la geometria partendo da questo per un intorno di 200 m lungo la superficie del DTM. Un esempio è riportato in figura 1.

Il prodotto di questa analisi, per quanto espresso in premessa, consente di individuare situazioni di potenziale esposizione al pericolo di valanghe ed è preliminare a successivi approfondimenti e integrazioni che potranno determinare aree potenzialmente valanghive.

La valutazione preliminare degli scenari di rischio ad opera dei comuni si basa infatti, sul quadro conoscitivo del territorio, in termini di determinazione delle aree potenzialmente valanghive individuate dalle regioni e, quindi, della pericolosità dei fenomeni valanghivi attesi considerando frequenza e magnitudo, in relazione al grado di antropizzazione del territorio stesso (valutazione della vulnerabilità) e dei valori degli elementi a rischio. Il grado di approfondimento possibile per la definizione degli scenari di rischio è quindi correlato al grado di conoscenza degli aspetti sopra citati, in particolare dei fenomeni valanghivi verificatisi nel passato e della loro interazione con infrastrutture e centri abitati.

Figura 1: aree di potenziale distacco valanghe (PRA)

APPENDICE: Procedimento cartografico per la realizzazione della carta delle aree di potenziale distacco valanghe - PRA (Potential Release Areas)

Nei paragrafi che seguono vengono descritti, i passaggi che hanno portato alla realizzazione della carta delle PRA.

Sono stati utilizzati due programmi GIS differenti: ArcGIS, utilizzato prevalentemente, e QGIS.

I file utilizzati come base di partenza per le elaborazioni sono i seguenti:

- DTM (Digital Terrain Model Modello Digitale del Terreno) della Regione Emilia-Romagna (formato raster). Questo prodotto rappresenta l'altimetria attraverso un modello a celle 5x5 m a cui è associata l'informazione di quota
- 2. Carta dell'Uso del suolo della Regione Emilia-Romagna (dettaglio 2020 ed. 2023) (formato vettoriale, poligoni), nello specifico il livello 3.1 'Aree boscate'

ELABORAZIONE DEI POLIGONI DAL DTM

In questa prima fase vengono definiti dei poligoni in cui sono verificate le seguenti condizioni:

- $28^{\circ} \le \text{pendenza} \le 60^{\circ}$
- curvatura planare ≤ 0,0001
- rugosità ≥ 6
- quota ≥ 1250m

Con ArcGIS

- 1. Utilizzare il tool Slope con output in gradi e metodo planare. Output: slope.tif
- Con il Raster Calculator generare un raster con espressione '("slope.tif">= 28) & ("slope.tif"<60)'. Output: slope_PRA.tif (raster con valori 0/1)
- 3. Utilizzare il tool Curvature con input il dtm. Output raster di curvatura planare: pla_cur.tif
- Con il Raster Calculator generare un raster con espressione "plan_cur5x5.tif"<= -0.0001' Output: plcur_PRA.tif (raster con valori 0/1)

Con QGIS

5. Caricare il DTM per calcolare la rugosità con il tool Asperità. Output: roughness.tif

🔇 Asperità		×
Parametri Log		
Raster in ingresso		A
# dtm5x5 [EPSG:7791]		•
Numero banda		
Banda 1 (Gray)		-
Calcola i margini		
Parametri Avanzati		
Asperità		
F:/Poligoni_CLPV_qgis/elaborazioni/roughness5x5.tif		≪
✔ Apri il file risultante dopo l'esecuzione dell'algoritmo		
Console GDAL/OGR		
gdaldem roughness F:/Poligoni_CLPV_qgis/dtm5x5.tif F:/Poligoni_CLPV_qgis/elab	orazioni/roughness5x5.tif -of	f GTiff -b 1
0%		Annulla
Esegui come Processo in Serie	Esegui Chiudi	Aiuto

Con ArcGIS

- Se mancante, impostare il sistema di riferimento per roughness.tif, poi con Raster Calculator generare un raster con espressione "roughness.tif" >= 6'. Output: rough_PRA.tif (raster con valori 0/1)
- Sovrapporre le tre variabili di pendenza, curvatura planare e rugosità tramite il raster Calculator con espressione "plcur_PRA.tif"+"slope_PRA.tif"+"rough_PRA.tif". Output: PRAnobosco.tif (raster con valori da 1 a 3)
- Estrarre dal DTM le quote maggiori o uguali a 1250m (valore definito in base al catasto valanghe RER) con Raster Calculator ed espressione ("dtm5x5.tif" >= 1250'. Output: quotamagg1250.tif
- 10. Estrarre solo i valori di PRAnobosco5x5_1250.tif = 4 con Raster Calculator ed espressione "PRAnobosco5x5_1250.tif" == 4'. Output: PRAnobosco5x5_1250.tif (raster con valori 0/1)
- 11. Vettorializzare il raster con il tool Raster to Polygon. Output: RasToPol01.shp (shp con valori 0/1)
- 12. Aggregare i poligoni tramite il tool Aggregate Polygon con aggregation distance 0,5m, minimum area 100m2 e minimum hole size 24m2. Output: rtp01_03.shp

Click error and warning icons for more information			× <	Aggregate Polygons
Input Features				
0-1\RasToPol01BU		-	· 🔁 👘	Combines polygons within a
Output Feature Class	other into new polygons.			
F:\CLPV\CLPV5X5\elaborazioni\rtp01_3.shp				
Aggregation Distance				
	0,5	Meters	\sim	
Minimum Area (optional)				
	100	Square Meters	\sim	
Minimum Hole Size (optional)				
	24	Square Meters	\sim	
Preserve orthogonal shape (optional)				
Barrier Features (optional)				
			-	
			+ `	

Per smussare i poligoni utilizzare il tool Smooth Polygon con metodo Paek e tolleranza
20 m. Output: sm_paek20m.shp

Click error and warning icons to	or more information					<u>×</u> <	Smooth Polygon	1
Input Features							Orecettes about analysis	
OK\rtp01_03					-	3	Smooths sharp angles in	
Output Feature Class	tput Feature Class						aesthetic or cartographic	
F:\CLPV\CLPV5X5\elaborazion	ni\sm_paek20m.shp				6	3	quality.	
Smoothing Algorithm						- 1		
PAEK						$\overline{}$		
Smoothing Tolerance								
			20	Meters		~		
Preserve endpoint for rings	(optional)							
Handling Topological Errors (op	otional)							
Ino_check						×		
Input barriers Layers (optiona)							
1					<u> </u>	2		

- 14. Sommare la quota con le altre tre variabili tramite il Raster Calculator ("quotamagg1250.tif" + "PRAnobosco5x5.tif". Output: PRAnobosco5x5_1250.tif (raster con valori da 1 a 4)
- 15. Creare un nuovo campo in cui calcolare l'area ed eliminare i poligoni con area inferiore a 100mq. Output: CLPV_poligoni.shp

Figura 2: definizione dei poligoni parametrizzati su pendenza, curvatura, rugosità e quota.

DEFINIZIONE DEI "PUNTI ALTI"

Per circoscrivere le aree di interesse alle zone sommitali dei poligoni appena definiti, si procede ad individuarne il punto più alto.

Con ArcGIS

16. Tramite il tool Extrac by mask estrarre il dtm sulla base dello shp CLPV_poligoni.shp. Output: dem_mask.tif

ut restor or		
ture mask	Input ras	er crinale_unito.tif
a	data	er or feature mask data
it mask data	Input mask	oligoni_BU
ning areas to	defining an	ster
act.	extract.	PuntiAlti\elaborazioni\dem_mask.tif
	b and ba a	
ning areas to act.	defining ar extract.	ster PuntiAlti\elaborazioni\dem_mask.tif

17. Con Zonal Statistics calcolare il valore della quota media dentro ogni poligono. Output: zonalmedia.tif

🔨 Zonal Statistics	- 0	×
Click error and warning icons for more information	Zonal Statistics	~
Input raster or feature zone data		
CLPV_poligoni_BU 🗾 🖻	on values of a raster	
Zone field	within the zones of	
FID V	another dataset.	
Input value raster		
dem_mask.tif 📃 🖆		
😣 Output raster		
F:\CLPV\PuntiAlti\elaborazioni\zonalmedia.tif		
Statistics type (optional)		
MEAN ~		
Ignore NoData in calculations (optional)		
× ×		~
OK Cancel Environments << Hide Help	Tool Help	

- 18. Con Zonal Statistics calcolare il valore della deviazione standard dentro ogni poligono CLPV. Output: zonalstd.tif
- 19. Tramite Raster Calculator generare un raster con espressione 'Con("dem_mask" ("zonalmedia" +"zonalstd") >= 0,"dem_mask")'. Output: quasicrinale.tif
- 20. Tramite Raster Calculator generare un raster con espressione Con("IntDTM_crinale_unito.tif" == "quasicrinale.tif",1)'. Output: quasipol.tif
- 21. Vettorializzare il poligono tramite Raster to Polygon. Output: quasipol.shp
- 22. Per ogni quasipol.shp calcolare il valore massimo (punto più alto) con Zonal Statistics in base al dtm. Output: zonalmaxQP.tif

Tonal Statistics	- 🗆 X	
Input raster or feature zone data	Zonal	^
	otatistics	
Id V	Calculates	
Input value raster	statistics on	
IntDTM_crinale_unito.tif	raster within	
Output raster	the zones of	
F:\CLPV\PuntiAlti\elaborazioni\zonalmaxQP.tif	another	
Statistics type (optional)	dataset.	
MAXIMUM		
✓ Ignore NoData in calculations (optional)		
×		~
OK Cancel Environments << Hide Help	Tool Help	

- 23. Tramite il Raster Calculator estrarre il punto più alto coincidente col dtm, con espressione 'Con("IntDTM_crinale_unito.tif" == "zonalmaxQP.tif","IntDTM_crinale_unito.tif")'. Output: puntomax.tif
- 24. Con Raster to Polygon trasformare in vettoriale. Output: rastopol2.shp
- 25. Col tool Intersect intersecare lo shp appena creato con se stesso e impostare un output di punti. Output: intersect.shp

≪ Intersect	×
Click error and warning icons for more information	Intersect
Input Features	Computes a geometric intersection of the input features.
Features Ranks A rastopol2.shp X rastopol2.shp X Image: Constraint of the second secon	Features or portions of features which overlap in all layers and/or feature classes will be written to the output feature class.
< >	INPUT
Cutput Feature Class	INTERSECT
OK Cancel Apply << Hide Help	Tool Help

- 26. Creare un Buffer su Intersect di 0,5m. Output: Buff05.shp
- 27. Con Merge unire rastopol2.shp e Buff05.shp. Output: merge.shp
- 28. Ridurre i poligoni con Aggregate Polygon impostando la distanza a 0,5m. Output: aggreg1.shp

🔨 Aggregate Polygons		×
Click error and warning icons for more information	Aggregate	
Input Features	Polygons	
merge.shp 🗾 🖻	Combines	
Cutput Feature Class	combines	
F:\CLPV\PuntiAlti\5x5smooth\elaborazioni\aggreg1.shp	a specified	
Aggregation Distance	distance of	
0,5 Meters V	each other into	
Minimum Area (optional)	new polygons.	
0 Square Meters V		
Minimum Hole Size (optional)		
0 Square Meters V		
Preserve orthogonal shape (optional)		
Barrier Features (optional)		
		\sim
OK Cancel Apply << Hide Help	Tool Help	

29. Con Feature to Point (centroidi) trasformare i poligoni in punti. Output: punti.shp

SOTTRAZIONE DELLE AREE BOSCATE

Dallo strato informativo della carta dell'Uso del suolo estrarre tutti i poligoni che fanno parte della categoria 3, 'Aree boscate' ed eliminare le geometrie di punti.shp che si trovano all'interno di essi.

Figura 3: definizione dei punti a quota maggiore per ogni poligono al di fuori delle aree boscate

ESTRAZIONE DELLE PARTI SOMMITALI - PRA

In questa fase i poligoni dello shp CLPV_poligoni.shp vengono ridefiniti partendo dal punto alto ricadente in ognuno di essi e per un intorno di 200 m lungo la superficie del DTM. Per questa parte è necessario utilizzare il Model Builder con la funzione Iterate Feature Selection, in modo da eseguire tutti i passaggi in serie per ogni singolo punto.

Con ArcGIS

- 1. Generare un buffer di 0,5m attorno ai poligoni e verificare che tutti i punti ricadano in essi
- 2. Nello shp punti.shp ricompilare il campo ORIG_FID con un numero sequenziale incrementale
- 3. Aprire il Model Builder e inserire la funzione Iterate da far girare su ogni feature (campo ORIG_FID) dello shp punti.shp. output: PuntiAlti_selected
- 4. Per ogni punto selezionato utilizzare il tool Path distance con il dtm come superficie e 200m come distanza. Output: pd_%Value%.tif

🔨 Path Distance		×
Click error and warning icons for more information	Path Distance	_
Input raster or feature source data	Calculates, for each cell, the least accumulative cost distance from or to the least-cost source, while accounting for surface distance along with horizontal and vertical cost factors.	
200 V Output baddink raster (optional) Image: Control of the second		<
OK Cancel Apply << Hide Help	Tool Help	

5. Tramite il tool Select layer by location selezionare il poligono di CLPV_poligoni.shp che interseca il punto proveniente dall'Iterate (punto 4)

Select Layer By Location					
Input Feature Layer				Select Layer By	~
CLPV_poligoni_BU		- 🖻		Location	
Relationship (optional)					
INTERSECT		~		Selects features in a layer	
Selecting Features (optional)				relationship to features in	
puntiAlti_selected		I 🖻		another layer.	
Search Distance (optional)					
	Meters	\sim		Each feature in the Input	
Selection type (optional)				reature Layer is evaluated	÷
NEW_SELECTION		~		Selecting Features layer or feature class; if the	
Invert Spatial Relationship (optional)					
				specified Relationship is	
				met, the input feature is	
				selecteu.	
			Ť		Ý
	 		- 1		

- 6. Trasformare in raster la singola feature selezionata nel passaggio precedente con il tool Polygon to raster. Output: pr%Value%.tif
- Col tool Extract by mask generare un raster su base pd_%Value%.tif e maschera pr%Value%.tif. Output: ext%Value%

🔨 Extract by Mask	×
Click error and warning icons for more information	Output raster
Input raster	
pd_%Value%.tif 🗾 🖻	Containing the cell values
Input raster or feature mask data	extracted from the input
pr%Value%.tif	raster.
F:\CLPV\Cut_200m\area_campione2_cimone\elaborazioni\ext%Value%	
· · · · · · · · · · · · · · · · · · ·	ĭ
OK Cancel Apply << Hide Help	Tool Help

- 8. Tramite il tool Int eliminare i valori decimali. Output: I_ext%Value%
- 9. Con Raster to polygon vettorializzare il raster del passaggio precedente. Output: pol_%Value%.shp
- 10. Con il tool Dissolve fondere tutte le celle in un unico poligono. Output: diss_%Value%.shp
- 11. Tramite Smooth polygon ridefinire il contorno dello shp con algoritmo PAEK e tolleranza 20m. Output: clpv_%Value%.shp
- Per ogni record di punti.shp verrà generato un poligono (clpv_%Value%.shp. passaggio 11). Utilizzare il tool Merge per sovrapporli in un unico shp.

- 13. Creare un nuovo campo in cui calcolare l'area ed eliminare i poligoni con area inferiore a 5000mq. Output: CLPV_poligoni.shp
- 14. Tramite Select by Location selezionare i poligoni che si trovano entro una distanza di 50 m dalle aree boscate ed eliminarli

Figura 3: aree di potenziale distacco valanghe (PRA)